Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 62(39): 16084-16100, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37722079

RESUMO

A series of peri-substituted acenaphthene-based phosphine selenoether bidentate ligands Acenap(iPr2P)(SeAr) (L1-L4, Acenap = acenaphthene-5,6-diyl, Ar = Ph, mesityl, 2,4,6-trisopropylphenyl and supermesityl) were prepared. The rigid acenaphthene framework induces a forced overlap of the phosphine and selenoether lone pairs, resulting in a large magnitude of through-space 4JPSe coupling, ranging from 452 to 545 Hz. These rigid ligands L1-L4 were used to prepare a series of selected late d-block metals, mercury, and borane complexes, which were characterized, including by multinuclear NMR and single-crystal X-ray diffraction. The Lewis acidic motifs (BH3, Mo(CO)4, Ag+, PdCl2, PtCl2, and HgCl2) bridge the two donor atoms (P and Se) in all but one case in the solid-state structures. Where the bridging motif contained NMR-active nuclei (11B, 107Ag, 109Ag, 195Pt, and 199Hg), JPM and JSeM couplings are observed directly, in addition to the altered JPSe in the respective NMR spectra. The solution NMR data are correlated with single-crystal diffraction data, and in the case of mercury(II) complexes, they are also correlated with the solid-state NMR data and coupling deformation density calculations. The latter indicate that the through-space interaction dominates in free L1, while in the L1HgCl2 complex, the main coupling pathway is via the metal atom and not through the carbon framework of the acenaphthene ring system.

2.
J Biomol Struct Dyn ; 41(21): 12411-12425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36661285

RESUMO

Treatment options for the management of breast cancer are still inadequate. This inadequacy is attributed to the lack of effective targeted medications, often resulting in the recurrence of metastatic disorders. Cumulative evidence suggests that epidermal growth factor receptor (EGFR-TK) and cyclin-dependent kinases-9 (CDK-9) overexpression correlates with worse overall survival in breast cancer patients. Pyranopyrazole and pyrazolone are privileged options for the development of anticancer agents. Inspired by this proven scientific fact, we report here the synthesis of two new series of suggested anticancer molecules incorporating both heterocycles together with their characterization by IR, 1H NMR, 13C NMR, 13C NMR-DEPT, and X-ray diffraction methods. An attempt to get the pyranopyrazole-gold complexes was conducted but unexpectedly yielded benzylidene-2,4-dihydro-3H-pyrazol-3-one instead. This unexpected result was confirmed by X-ray crystallographic analysis. All newly synthesized compounds were assessed for their anti-proliferative activity against two different human breast cancer cells, and the obtained results were compared with the reference drug Staurosporine. The target compounds revealed variable cytotoxicity with IC50 at a low micromolar range with superior selectivity indices. Target enzyme EGFR-TK and CDK-9 assays showed that compounds 22 and 23 effectively inhibited both biological targets with IC50 values of 0.143 and 0.121 µM, respectively. Molecular docking experiments and molecular dynamics simulation were also conducted to further rationalize the in vitro obtained results.Communicated by Ramaswamy H. Sarma.


Assuntos
Antineoplásicos , Neoplasias da Mama , Pirazolonas , Humanos , Feminino , Relação Estrutura-Atividade , Proliferação de Células , Cristalografia por Raios X , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Antineoplásicos/química , Neoplasias da Mama/patologia , Pirazolonas/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química
3.
Dalton Trans ; 51(47): 18118-18126, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36377852

RESUMO

Two-coordinate transition metal complexes are exciting candidates for single-molecule magnets (SMMs) because their highly axial coordination environments lead to sizeable magnetic anisotropy. We report a series of five structurally related two-coordinate Fe(II) m-terphenyl complexes (4-R-2,6-Xyl2C6H2)2Fe [R = tBu (1), SiMe3 (2), H (3), Cl (4), CF3 (5)] where, by changing the functionalisation of the para-substituent (R), we alter their magnetic function. All five complexes are field-induced single-molecule magnets, with relaxation rates that are well-described by a combination of direct and Raman mechanisms. By using more electron donating R groups we were able to slow the rate of magnetic relaxation. Our ab initio calculations predict a large crystal field splitting (>850 cm-1) and sizeable zero-field splitting parameters (ca. -60 cm-1, |E| < 0.2 cm-1) for 1-5. These favourable magnetic properties suggest that m-terphenyl ligands have untapped potential as chemically versatile ligands able to impose highly axial crystal fields.

4.
Organometallics ; 41(11): 1426-1433, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-36157255

RESUMO

The effects of para-substitution on the structural and electronic properties of four series of two-coordinate m-terphenyl Group 12 complexes (R-Ar#)2M (M = Zn, Cd, Hg; R = t-Bu 1-3, SiMe3 4-6, Cl 7-9, CF3 10-12, where R-Ar# = 2,6-{2,6-Xyl}2-4-R-C6H2 and 2,6-Xyl = 2,6-Me2C6H3) have been investigated. X-ray crystallography shows little structural variation across the series, with no significant change in the C-M-C bond distances and angles. However, considerable electronic differences are revealed by heteronuclear nuclear magnetic resonance (NMR) spectroscopy; a linear correlation is observed between the 113Cd, 199Hg, and 1H (2,6-Xyl methyl protons) NMR chemical shifts of the para-substituted complexes and the Hammett constants for the R-substituents. Specifically, an upfield shift in the NMR signal is observed with increasingly electron-withdrawing R-substituents. Density functional theory (DFT) calculations are employed to attempt to rationalize these trends.

5.
Inorg Chem ; 60(14): 10114-10123, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34197113

RESUMO

A series of group 11 m-terphenyl complexes have been synthesized via a metathesis reaction from the iron(II) complexes (2,6-Mes2C6H3)2Fe and (2,6-Xyl2C6H3)2Fe (Mes = 2,4,6-Me3C6H2; Xyl = 2,6-Me2C6H3). [2,6-Mes2C6H3M]2 (1, M = Cu; 2, M = Ag; 6, M = Au) and [2,6-Xyl2C6H3M]2 (3, M = Cu; 4, M = Ag) are dimeric in the solid state, although different geometries are observed depending on the ligand. These complexes feature short metal-metal distances in the expected range for metallophilic interactions. While 1-4 are readily isolated using this metathetical route, the gold complex 6 is unstable in solution at ambient temperatures and has only been obtained in low yield from the decomposition of (2,6-Mes2C6H3)Au·SMe2 (5). NMR spectroscopic measurements, including diffusion-ordered spectroscopy, suggest that 1-4 remain dimeric in a benzene-d6 solution. The metal-metal interactions have been examined computationally using the Quantum Theory of Atoms in Molecules and by an energy decomposition analysis employing natural orbitals for chemical valence.

6.
Dalton Trans ; 50(2): 722-728, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33346293

RESUMO

The effect of para-substitution upon the structural and electronic properties of a series of m-terphenyl lithium complexes [R-Ar#-Li]2 (R = t-Bu 1, SiMe32, H 3, Cl 4, CF35; where R-Ar# = 2,6-{2,6-Xyl}2-4-R-C6H2 and 2,6-Xyl = 2,6-Me2C6H3) has been investigated. X-ray crystallography reveals the complexes to be structurally similar, with little variation in C-M-C bond lengths and angles across the series. However, in-depth NMR spectroscopic studies reveal notable electronic differences, showing a linear correlation between the 7Li{1H} NMR chemical shifts of the para-substituted complexes and their Hammett constants. The flanking methyl protons exhibit a similar electronic shift in the 1H NMR spectra, which has been rationalised by the presence of through-space LiH interactions, as evidenced by two-dimensional 7Li-1H heteronuclear Overhauser spectroscopy (HOESY). In both cases, electron-withdrawing substituents are found to cause an upfield peak shift. A computational analysis is employed to account for these trends.

7.
Chem Commun (Camb) ; 56(58): 8139-8142, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32691803

RESUMO

The reaction between a two-coordinate Co(ii) diaryl complex and "GaI" affords 2,6-Pmp2C6H3CoGa3I5, in a new geometry for a heavier group 13-transition metal cluster. Experimental and computational investigations show that this compound is best described as a nido metalla-group 13 cluster.

9.
Chem Sci ; 11(10): 2759-2764, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-34084335

RESUMO

The enantioselective synthesis of densely functionalized polycarbocycles by the rhodium(i)-catalyzed reaction of arylboronic acids with 1,3-diketones is described. The key step in these desymmetrizing domino addition-cyclization reactions is an alkenyl-to-aryl 1,4-Rh(i) migration, which enables arylboronic acids to function effectively as 1,2-dimetalloarene surrogates.

10.
Dalton Trans ; 48(33): 12365-12381, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31355398

RESUMO

Enforcing unusually low coordination numbers on transition metals with sterically demanding ligands has long been an area of interest for chemists. Historically, the synthesis of these challenging molecules has helped to elucidate fundamental principles of bonding and reactivity. More recently, there has been a move towards exploiting these highly reactive complexes to achieve a range of transformations using cheap, earth-abundant metals. In this Perspective, we will highlight selected examples of transition metal complexes with low coordination numbers that have been used in catalysis and the activation of small molecules featuring strong bonds (N2, CO2, and CO).

11.
Chemistry ; 25(27): 6840-6846, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30875128

RESUMO

A magnesium complex (1) featuring a bidentate aminopyridinato ligand is a remarkably selective catalyst for the dehydrocoupling of amine-boranes. This reaction proceeds to completion with low catalyst loadings (1 mol %) under mild conditions (60 °C), exceeding previously reported s-block systems in terms of selectivity, rate, and turnover number (TON). Mechanistic studies by in situ NMR analysis reveals the reaction to be first order in both catalyst and substrate. A reaction mechanism is proposed to account for these findings, with the high TON of the catalyst attributed to the bidentate nature of the ligand, which allows for reversible deprotonation of the substrate and regeneration of 1 as a stable resting state.

12.
Nat Commun ; 9(1): 3757, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30217985

RESUMO

Carbon monoxide is a key C1 feedstock for the industrial production of hydrocarbons, where it is used to make millions of tonnes of chemicals, fuels, and solvents per annum. Many transition metal complexes can coordinate CO, but the formation of new C-C bonds in well-defined compounds from the scission and subsequent coupling of two or more CO moieties at a transition metal centre remains a challenge. Herein, we report the use of low-coordinate iron(II) complexes for the selective scission and homologation of CO affording unusual squaraines and iron carboxylates at ambient temperature and pressure. A modification of the ligand framework allows for the isolation and structural characterisation of a proposed metallacyclic Fe(II) carbene intermediate. These results indicate that, with the appropriate choice of supporting ligands, it is possible to cleave and homologate carbon monoxide under mild conditions using an abundant and environmentally benign low-coordinate, first row transition metal.

13.
J Am Chem Soc ; 139(51): 18545-18551, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29191021

RESUMO

Here, we highlight the ability of peri-substitution chemistry to promote a series of unique P-P/P-As coupling reactions, which proceed with concomitant C-H bond formation. This dealkanative reactivity represents an interesting and unexpected expansion to the established family of main-group dehydrocoupling reactions. These transformations are exceptionally clean, proceeding essentially quantitatively at relatively low temperatures (70-140 °C), with 100% diastereoselectivity in the products. The reaction appears to be radical in nature, with the addition of small quantities of a radical initiator (azobis(isobutyronitrile)) increasing the rate dramatically, as well as altering the apparent order of reaction. DFT calculations suggest that the reaction involves dissociation of a phosphorus centered radical (stabilized by the peri-backbone) to the P-P coupled product and a free propyl radical, which carries the chain. This unusual reaction demonstrates the powerful effect that geometric constraints, in this case a rigid scaffold, can have on the reactivity of main group species, an area of research that is gaining increasing prominence in recent years.

14.
Dalton Trans ; 45(5): 1976-86, 2016 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-26314761

RESUMO

Bis(borane) adducts Acenap(PiPr2·BH3)(PRH·BH3) (Acenap = acenaphthene-5,6-diyl; 4a, R = Ph; 4b, R = ferrocenyl, Fc; 4c, R = H) were synthesised by the reaction of excess H3B·SMe2 with either phosphino-phosphonium salts [Acenap(PiPr2)(PR)](+)Cl(-) (1a, R = Ph; 1b, R = Fc), or bis(phosphine) Acenap(PiPr2)(PH2) (3). Bis(borane) adducts 4a-c were found to undergo dihydrogen elimination at room temperature, this spontaneous catalyst-free phosphine-borane dehydrocoupling yields BH2 bridged species Acenap(PiPr2)(µ-BH2)(PR·BH3) (5a, R = Ph; 5b, R = Fc; 5c, R = H). Thermolysis of 5c results in loss of the terminal borane moiety to afford Acenap(PiPr2)(µ-BH2)(PH) (14). Single crystal X-ray structures of 3, 4b and 5a-c are reported.

15.
Inorg Chem ; 53(16): 8538-47, 2014 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-25073081

RESUMO

Coordination chemistry of an acenaphthene peri-backbone-supported phosphino-phosphonium chloride (1) was investigated, revealing three distinct modes of reactivity. The reaction of 1 with Mo(CO)4(nor) gives the Mo(0) complex [(1)Mo(CO)4Cl] (2), in which the ligand 1 exhibits monodentate coordination through the phosphine donor and the P-P bond is retained. PtCl2(cod) reacts with the chloride and triflate salts of 1 to form a mononuclear complex [(1Cl)PtCl2] (3) and a binuclear complex [((1Cl)PtCl)2][2TfO] (4), respectively. In both of these complexes, the platinum center adds across the P-P bond, and subsequent chloride transfer to the phosphenium center results in phosphine-chlorophosphine bidentate coordination. [((1)PdCl)2] (5) was isolated from the reaction of 1 and Pd2(dba)3 (dba = dibenzylideneacetone). Oxidative addition to palladium(0) results in a heteroleptic phosphine bridging phosphide coordination to the Pd(II) center. In addition, reaction of 1 with BH3·SMe2 leads to the bis(borane) adduct of the corresponding mixed tertiary/secondary phosphine (6), with BH3 acting as both a reducing agent and a Lewis acid. The new compounds were fully characterized, including X-ray diffraction. The ligand properties of 1 and related bonding issues are discussed with help of DFT computations.

16.
Beilstein J Org Chem ; 8: 50-60, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22423271

RESUMO

N,N-Diisopropyl-2-propylbenzamide 6-H undergoes lateral deprotonation by t-BuLi in the presence of the Lewis base PMDTA (N,N,N',N″,N″-pentamethyldiethylenetriamine) to give a benzyllithium 6-Li(l)·PMDTA that incorporates a trigonal planar secondary carbanion. In the solid state, the amide directing group and the PMDTA additive work together to abstract the metal ion from the deprotonated α-C of the propyl group (4.107(4) Å). A short distance of 1.376(3) Å is observed between the deprotonated carbon centre and a planar aromatic system that shows a pattern of bond lengths which contrasts with that reported for related tertiary carbanion systems. Analogous benzylic deprotonation is seen if 6-H is treated with t-BuLi in the presence of diglyme to give 6-Li(l)·DGME. X-ray crystallography now shows that the metal ion more closely approaches the tertiary carbanion (2.418(6) Å) but that the planarity of the deprotonated carbon centre and the bonding pattern in the organic anion seen in the PMDTA complex are retained. DFT analysis corroborates both the short distance between aromatic ring and carbanion centre and the unperturbed nature of aromaticity in 6-Li(l)·L (L = Lewis base). The observation of two structure-types for the carbanion in solution is explained theoretically and by NMR spectroscopy in terms of cis and trans isomerism imparted by partial double bond character in the arene-(α-C) bond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...